I. INTRODUCTION
Recently, space weather e.g., geomagnetic storm, is an important topic [1], [2]. For example, a large geomagnetic storm could cause economic losses [3]. The data of Earth’s magnetic field are necessary to be recorded almost in real-time [4]. The variants of Earth’s magnetic field indicate a part of space weather [5]. Therefore, the International Real-time Magnetic Observatory Network (INTERMAGNET) is based on the Observatory Instruments in Ottawa, Canada in August 1986 with the ground-based magnetometers throughout the world, as per Fig. 1. After coordination between the United States and British Geological Surveys, this network is used to record Earth’s magnetic field e.g., Disturbance storm time (Dst) index that monitored a large geomagnetic storm. The INTERMAGNET has been used in to access the observed communicating. The production of geomagnetic products could be obtained in real-time. Overseeing the operations of INTERMAGNET, the first geomagnetic Information Node (GIN) was established in 1991, the first CD-ROM/DVD was published in 1991.

II. DISCUSSION
INTERMAGNET is an observation system, which provides Earth’s magnetic field data that supports research into the earth, from its earth surface to space. Especially geomagnetic storms are monitored through the variants of Dst index. When the magnitude of the Dst index varies to the extremely small negative, then a large geomagnetic storm is indicated in Fig. 3 [5], [7]-[9]. Fig. 3. plots the Dst indices in November 2001. The negative Dst indices can describe the detailed features of a geomagnetic storm on 05 November. It caused by a fast-moving CME triggered vivid aurorae as far south as Texas, California, and Florida. For the worldwide membership, INTERMAGNET supplies consistent data with the aim of the geographical experiments, research and applied science.

III. CONCLUSIONS
The INTERMAGNET was based on the Observatory Instruments in Ottawa, Canada in August 1986. The INTERMAGNET served as important observation system, which has been used to establish a global network of magnetic observatories for measured and recorded equipment, in order to facilitate data exchanges and the production of geomagnetic products was obtained in close to real time. For example, it has been used to record Disturbance storm time (Dst) index that monitored a large geomagnetic storm. Overseeing the operations of INTERMAGNET, the first geomagnetic Information Node (GIN) was established in 1991, the first CD-ROM/DVD was published in 1991.
ACKNOWLEDGMENT

The author is grateful to the World Data Centre for Geomagnetism, Kyoto; the geomagnetic observatories and National Oceanic and Atmospheric Administration (NOAA).

The author is also grateful the supporting of Prof. Dr Yuan Mei in Taiwan and all of my friends in Taiwan and China.

CONFLICTS OF INTEREST

The author declares that there is no conflict of interest.

REFERENCES


Jyh-Woei Lin received the B.Sc. degree from the Department of Physics, Chung Yuan Christian University, Chung Li City, Taiwan, in 1989, the M.Sc. degree from the Institute of Geophysics, National Central University, Chung Li City, in 1991, the Ph.D. degree from the Institut für Geophysik, Clausthal-Zellerfeld, Technische Universität Clausthal, Germany, in 2000, and the Ph.D. degree from the Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan, in 2019. Since 2019, he is a researcher in the Department of Electrical Engineering, Southern Taiwan University of Science and Technology. Until 2021, he has 71 SCI (SCIE) and EI papers include artificial intelligence, space physics, geophysics, medical sciences, and remote sensing; especially four books’ publications in Germany and two books in USA. After September 2020, he is as a Professor in Binjiang College, Nanjing University of Information Science & Technology, Wuxi, Jiangsu Province, China.

Fig. 2. Artist’s conception of the GOES-13 satellite (Source: National Aeronautics and Space Administration, NASA).

Fig. 3. Plot of Dst indices for November 2001 (Source: World Data Center for Geomagnetism, Kyoto). The negative Dst indices can describe the detailed features of a geomagnetic storm on 05 November. It caused by a fast-moving CME triggered vivid aurorae as far south as Texas, California, and Florida.

DOI: http://dx.doi.org/10.24018/ejgeo.2021.2.5.177