##plugins.themes.bootstrap3.article.main##

This paper summarizes the investigation results on the main parameters affecting the synthesis of type X and A zeolites using coal silicious fly ash (FA) as raw material. The synthesis was performed by dissolution of alkali-fused alumino-silicates, followed by hydrothermal treatment. The experimental data confirm that fly ash SiO2/Al2O3 ratio, NaOH/FA ratio, acid treatment of pre-fused fly ash, salinity of solution have a significant effect on type and properties of newly formed zeolites. In summary, the results show that A and X-type zeolite form with FA SiO2/Al2O3 ratio < 1.12 and > 1.86, respectively. Moreover, FA characterized by SiO2/Al2O3 mole ratio of 3.15 is suitable for X-type zeolite synthesis while A-type zeolite does not form without NaAlO2 addition. The crystallization occurs faster at higher temperatures although above 90°C X-type zeolite evolves into more stable phases whereas increasing the crystallization time from 1 to 72 hours, the yield of the synthetic products enhances from 60 to 75%. The use of seawater is responsible for the synthesis of X-type showing both lower purity and specific surface area. However, the synthetic products are characterized by high exchange capacity (> 320 meq/100 g), thus suggesting their successful application as adsorbents and catalysts in different types of wastewater and industrial waste treatments.

References

  1. Z. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, and Y. Q. Xi, A comprehensive review on the applications of coal fly ash, Earth-Sci. Rev. 141, 2015, pp. 105-121.
     Google Scholar
  2. C. Belviso, State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues, Prog. Energy Combust. Sci. 65, 2018, pp. 109-135.
     Google Scholar
  3. A. Korpa, K. Xhaxhiu, A. Mele, E. Spahiu, and E. Halimi, Contributing to ecosystem conservation via utilization of beneficiated high carbon fly ash for greener cement production, Int. J. Environ. Appl. Sci. 7, 2012a, pp. 847-857.
     Google Scholar
  4. A. Korpa, K. Xhaxhiu, A Mele, and R Trettin, Production and characteristics of green bricks from waste silicious fly ash, Albanian, J. Nat. Tech. Sci. 2, 2012b, pp. 79-93.
     Google Scholar
  5. A. Korpa, B. Seiti, K. Xhaxhiu, A. Mele, and R. Trettin, Processing of high sulphate and free lime calcareous coal fly ash for producing high volume blended cements and complying grade products employed in civil engineering, Zašt. Mater. 55, 2014, pp. 251-258.
     Google Scholar
  6. C. Belviso, F. Cavalcante, and S. Fiore, Synthesis of zeolite from Italian coal fly ash, Differences in crystallization temperature using seawater instead of distilled water, J. Waste Manag. 30, 2010, pp. 839-847
     Google Scholar
  7. C. Belviso, F. Cavalcante, F. J. Huertas, A. Lettino, P. Ragone, and S. Fiore, The crystallisation of zeolite (X- and A-type) from fly ash at 25 C in artificial sea water, Micropor. Mesopor. Mat. 162, 2012, pp. 115-121.
     Google Scholar
  8. S. Belviso, F. Cavalcante, A. Lettino, P. Ragone, and C. Belviso, Fly ash as raw material for the synthesis of zeolite-encapsulated porphyrazine and metallo porphyrazine tetrapyrrolic macrocycles, Micropor. Mesopor. Mat. 236, 2016, pp. 328-234.
     Google Scholar
  9. H. L. Seung, S. Etsuo, D. Masaki, and K. B. Wan, Characterization of fly ash directly collected from electrostatic precipitator, Cem. Concr. Res. 29, 1999, pp. 1791–1797.
     Google Scholar
  10. L. Kula, A. Olgun, V. Sevinc, and Y. Erdogan, An Investigation on the Use of Tincal Ore Waste; Fly Ash, and Coal Bottom Ash as Portland Cement Replacement Materials, Cem. Concr. Res. 32, 2002, pp. 227-232.
     Google Scholar
  11. X. Querol, N. Moreno, J. C. Umana, A. Alastuey, E. Hernandez, A. López-Soller, and F. Plana, Synthesis of zeolite from coal fly ash: An overview, Int. J. Coal Geol. 50, 2002, pp. 412–423.
     Google Scholar
  12. D. Ruenngam, D. Rungsuk, R. Apiratikul, and P. Pavasant, Zeolite formation from coal fly ash and its adsorption potential, J. Air Waste Manage. Assoc. 59, 2009, pp. 1140–1147.
     Google Scholar
  13. D. Jain, C. Khatri, and A. Rani, Fly ash supported calcium oxide as recyclable solid base catalyst for Knoevenagel condensation reaction, Fuel Proc. Technol. 91, 2010, pp. 1015-1021.
     Google Scholar
  14. J. Behin, S. S. Bukhari, H. Kazemian, and S. Rohani, Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite, Fuel 171, 2016, pp. 195-202.
     Google Scholar
  15. S. M. Hosseini, A. Ghadi, M. S. H. Baei, H. Javadian, V. Maghsudi, and V. Kazemian, Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: A review, Fuel 217, 2018, pp. 320-342.
     Google Scholar
  16. J. D. C. Izidoro, D. A. Fungaro, J. E. Abbott, and S. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel 103, 2013, pp. 827–834.
     Google Scholar
  17. G. Gliozzi, S. Passeri, F. Bortolani, M. Ardizzi, P. Mangifesta, and F. Cavani, Zeolite catalysts for phenol benzoylation with benzoic acid: Exploring the synthesis of hydroxybenzophenones, Catalysts 5, 2015, 2223-2243.
     Google Scholar
  18. K. M. Lee, and Y. M. Jo, Synthesis of zeolite from waste fly ash for adsorption of CO2, J. Mater. Cycles Waste Manag. 12, 2010, pp. 212–219.
     Google Scholar
  19. N. Murayama, H. Yamamoto, and J. Shibata, Zeolite synthesis from coal fly ash by hydrothermal reaction using various alkali sources, J. Chem. Technol. Biot. 77, 2002, pp. 280–286.
     Google Scholar
  20. T. Wajima, H. Ishimoto, K. Kuzawa, K. Ito, O. Tamada, M. E. Gunter, and J. F. Rakovan, Material conversion from paper-sludge ash in NaOH, KOH, and LiOH solutions, Am. Miner. 92, 2007, 1105–1111.
     Google Scholar
  21. C. F. Wang, J. S. Li, L. J. Wang, and X. Y. Sun, Infuence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater. 155, 2008, pp. 58–64.
     Google Scholar
  22. Z. T. Yao, M. S. Xia, Y. Ye, and L. Zhang, A comprehensive review on the applications of coal fly ash, J. Hazard. Mater. 170, 2009, pp. 105-121.
     Google Scholar
  23. D. Vucinic, I. Miljanovic, A. Rosic, and P. Lazic, Effect of Na2O/SiO2 mole ratio on the crystal type of zeolite synthesized from coal fly ash, J. Serb. Chem. Soc. 68, 2003, pp. 471–478.
     Google Scholar
  24. F. Miyaji, T. Murakami, and Y. Suyama, Formation of linde F zeolite by KOH treatment of coal fly ash, J. Ceram. Soc. Jpn. 117, 2009, pp. 619–622.
     Google Scholar
  25. X. Querol, A. Alastuey, A. López-Soler, F. Plana, J. M. Andrés, R. Juan, P. Ferrer, and C. R. Ruiz, A fast method for recycling fly ash: microwave assisted zeolite synthesis, Environ. Sci. Technol. 31, 1997, pp. 2527–2533.
     Google Scholar
  26. K. S. Hui, and C. Y. H. Chao, Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash, Micropor. Mesopor. Mat. 88, 2006, pp. 145–151.
     Google Scholar
  27. M. Gross-Lorgouilloux, M. Soulard, P. Caullet, J. Patarin, E. Moleiro, and I. Saude, Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: Influence of additional silica, Micropor. Mesopor. Mat. 127, 2010, pp. 41–49.
     Google Scholar
  28. H. Tanaka, and A. Fujii, Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process, Adv. Powder Technol. 20, 2009, pp. 473–479.
     Google Scholar
  29. Y. Yanqing, L. Xiaoliang, Z. Xiaolan, and Z. Xiaobin, Effect of seawater salinity on the synthesis of zeolite from coal fly ash, Front. Environ. Sci. Eng. 8 54, 2014, pp. 54–61.
     Google Scholar
  30. V. K. Jha, M. Nagae, M. Matsuda, and M. Miyake, Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained zeolite X in multi-metal systems, Environ. Manage. 90, 2009, pp. 2507-2514.
     Google Scholar
  31. A. Molina, and C. Poole, Comparative study using two methods to produce zeolites from fly ash, Miner. Eng. 17, 2004, pp. 167-173.
     Google Scholar
  32. A. A. Radhi, The Effects of Different Synthesis Conditions on Sodalite Crystal Morphology, Doctoral dissertation (Ohio University, USA), 2001.
     Google Scholar
  33. P. Panitchakarn, N. Laosiripojana, N. Viriya-Umpikul, and P. Pavasant, Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash, J. Air Waste Manag. Assoc. 64, 2014, pp. 586-596.
     Google Scholar
  34. D. W. Breck, Zeolite Molecular Sieves, (New York: John Wiley and Sons Inc.), 1974.
     Google Scholar
  35. G. G. Hollman, G. Steenbruggen, and M. Janseen-Jurkovicova, A two-step process for the synthesis of zeolites from coal fly ash, Fuel 78, 1999, pp. 1225-1230.
     Google Scholar
  36. J. C. Moise, J. P. Bellat, and A. Methivier, Adsorption of water vapor on X and Y zeolites exchangeable with barium, Microporous Mesoporous Mat. 43, 2001, pp. 91–101.
     Google Scholar
  37. S. J. Rayalu, N. K. Udhoji, Z. M. Munshi, and J. Hasan, Highly crystalline zeolite-A from fly ash of bituminous and lignite coal combustion, J. Hazard. Mater. 88, 2001, pp. 107-121.
     Google Scholar
  38. C. Belviso, N. Perchiazzi, and F. Cavalcante, Zeolite from fly ash: An investigation on metastable behaviour of the newly-formed minerals in a medium-high temperature range, Ind. Eng. Chem. Res. 58, 2019, pp. 20472-20480.
     Google Scholar
  39. S. Gjyli, A. Korpa, T. Tabanelli, R. Trettin, F. Cavani, and C. Belviso, Higher conversion rate of phenol alkylation by using synthetic fly ash based zeolites, Micropor. Mesopor. Mat. 284, 2019, pp. 434-444.
     Google Scholar
  40. W. Franus, and M. Franus, Hydrothermal technology of zeolite materials synthesis from fly ash, Int. J. Arts Sci. 6, 2013, pp. 391–396.
     Google Scholar
  41. T. Mishra, and S. Tiwari, Studies on sorption properties of zeolite derived from Indian fly ash, J. Hazard. Mater. 137, 2006, pp. 299-303.
     Google Scholar
  42. B. Subotić, D. Škrtić, I. Šmit, and L. Sekovanić, Transformation of zeolite A into hydroxysodalite: An approach to the mechanism of transformation and its experimental evaluation, J. Cryst. Growth 50 498, 1980, pp. 498-508.
     Google Scholar
  43. A. Korpa, T, Kota, E, Spahiu, and R. Trettin, An innovative approach for producing high volume fly ash blended cements that meet European standard requirements by employing a silicious coal fly ash exhibiting unusually high water demand and other peculiar properties, Zašt. Mater 54, 2013, pp. 334–340.
     Google Scholar
  44. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizz, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Cryst. 48, 2015, pp. 598-603.
     Google Scholar
  45. C. J. Schollenberger, and E. R. Dreibelbis, Analytical methods in base-exchange investigations on soils, Soil Sci. 30, 1930, pp. 161-173.
     Google Scholar
  46. R. G. Breuer, L. R. Barsotti, and A. C. Kelly, Extractive metallurgy of aluminum (New York: Interscience), 1963, pp. 133-157.
     Google Scholar
  47. Q. Liu, and A. Navrotsky, Synthesis of nitrate sodalite: An in situ scanning calorimetric study, Geochim. Cosmochim. Ac. 71, 2007, pp. 2072-2078.
     Google Scholar
  48. H. Tanaka, Y. Sakai, and R. Hino, Formation of Na-A and -X zeolites from waste solutions in conversion of coal fly ash to zeolites, Mater. Res. Bull. 37, 2002, pp. 1873–1884.
     Google Scholar
  49. S. M. Seo, G. H. Kim, H. S. Lee, S. O. Ko, O. S. Lee, Y. H. Kim, S. H. Kim, N. H. Heo, and W. T. Li, Single-crystal structure of fully dehydrated sodium zeolite Y (FAU), Na71 (Si121 Al71 O384) – FAU, Analytical Sciences: X-ray Structure Analysis Online 22, 2006, pp. 209-210.
     Google Scholar
  50. V. Gramlich, and W. M. Meier, The crystal structure of hydrated NaA: A detailed refinement of a pseudosymmetric zeolite structure, Z. Kristallogr. 133, 1971, pp. 134-149.
     Google Scholar