Contribution of Remote Sensing for the Mapping of the Yaoundé Metadiorites
##plugins.themes.bootstrap3.article.main##
Geologists face a number of problems, mainly related to the difficulty of covering the entire terrain, leading to various pieces of information collected and its extrapolation for drawing maps. To overcome these problems, we have proposed to use remote sensing which is a current tool for rock mapping. Remote sensing is a modern tool to highlight several information that conventional mapping methods do not allow. Thus, the objective of this work is to update the geological contours of the Yaoundé metadiorites by processing satellite images coupled with the classical approach. Sentinel 1-A radar images were used. A textural analysis of these images was carried out using the GLCM (Grey Level Co-occurrence Matrix) method, resulting in eight co-occurrence indices, among which three were chosen to perform colored compositions. The colored compositions obtained are VMH and HMV. And the contrasts obtained were compared with maps from previous work and also with field work. The metasedimentary rocks (kyanite - garnet migmatites and garnet micaschists) and metaigneous rocks (metadiorite) constitute the metamorphic complex distinctly mapped by exploiting remote sensing data, superposition maps from previous work and integrating the new sampling points. Remote sensing in geological mapping thus plays an important role mainly in the urbanized study area as it detects the metadiorites under the metasediments despite the existence of anthropogenic works and low vegetation cover.
References
-
Champetier de Ribes G, Aubague M. Carte géologique de reconnaissance à l’échelle 1/500 000 feuille Yaoundé Ouest, avec notice explicative. Direction des mines et de la géologie, Yaoundé, Cameroun, 1956 : 35p.
Google Scholar
1
-
Nzenti JP, Barbey P, Macaudière J, Soba D. Origin and evolution of the Late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Research, 1988; 38: 91-109.
Google Scholar
2
-
Yonta-Ngouné C. Le contexte géologique des indices de talc de la région de Boumnyebel (chaîne panafricaine d’Afrique Centrale, Cameroun). Thèse de Doctorat Ph.D, Université de Yaoundé I, 2010: 221 p +annexes.
Google Scholar
3
-
Nkoumbou C, Barbey P, Yonta-Ngouné C, Paquette, JL, Villiéras DF. Precollisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon. Journal of African Earth Sciences 2014 ; 99: 245-260.
Google Scholar
4
-
Fuh CG, Nkoumbou C, Tchakounte NJ, Mukete KO, Tchouankoue JP. Petrology, geochemistry, Ar-Ar isotopes of an arc related calk-alkaline pluton from Mamb (Pan African Yaoundé group, Cameroon): a testimony to the subduction of a hot oceanic crust. Lithos, 2021; 384–385:105973.
Google Scholar
5
-
Metang V, Nomo NE, Ganno S, Takodjou WJD, Ewolo TAM, Teda SAC, Fossi DH, Mbakam KMD, Tchameni R, Nkoumbou C, Nzenti JP. Anatexis of metadiorite from the Yaoundé area, Central African Orogenic Belt in Cameroon: implications on the genesis of in source granodiorite leucosomes. Arabian Journal of Geosciences, 2022a; 15: 359
Google Scholar
6
-
Metang V, Tassongwa B, Nomo N E, Kenzo HA, Wandji BSF, Domkam B, Mboutchouang DC, Mbakam KMD, Kengne TLG, Mouafo L. Geological study of a Mewoulou Nkolbisson ductile strike slip fault segment (Western Yaoundé, Cameroon): evidence of hazards related to structural landforms. Arabian Journal of Geosciences, 2022b: 15, 949
Google Scholar
7
-
Nzenti JP, Ngako V, Kambou R, Penaye J, Bassahak J, Njel OV. Structures régionales de la chaîne panafricaine du Nord Cameroun. Compte Rendu Académie des Sciences Paris, 1992 ; tome 315, série II, 209-215.
Google Scholar
8
-
Mvondo H, Owona S, Mvondo Ondoa J, Essono J. Tectonic evolution of the Yaounde segment of the Neoproterozoic Central Africa Orogenic Belt in southern Cameroon. Canadian Journal of African Earth, 2007; 44: 433-444.
Google Scholar
9
-
Owona S, Schulz B, Ratschbacher L, Mvondo Ondoa J, Ekodeck GE, Tchoua FM, Affaton P. Pan-African metamorphic evolution in the southern Yaoundé Group (Obanguie Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 2011a; 56 : 125-139.
Google Scholar
10
-
Owona S, Mvondo Ondoa J, Ratschbacher L, Ndzana MPS, Tchoua FM, Ekodeck GE. La géométrie de la tectonique archéenne, Paléo et néoprotérozoïque dans le Sud-Ouest du Cameroun. Comptes Rendus Geoscience, 2011b ; 343 : 312 - 322.
Google Scholar
11
-
Ngo Bidjeck, BLM, Betsi BT, Nga MYNL., Belnoun NRN, Molotouala AC, McFarlane C, Bitom DL. Geochemistry of rutile from the Pan-African Yaoundé metamorphic group: Implications for provenance and conditions of formation. Journal of African Earth Sciences, 2020 ; 170: 103912.
Google Scholar
12
-
Betsi Bineli T, Ngo Bidjeck Bondje LM, Mvondo H, Nga Mama YLN, Molotouala AC, McFarlane C. Rutile LA-ICP-MS U-Pb geochronology and implications for tectono-metamorphic evolution in the Yaoundé Group of the Neoproterozoic Central African Orogeny. Journal of African Earth Sciences, 2020; 171: 103939.
Google Scholar
13
-
Vicat JP, Pouclet A, Nkoumbou C, Sémé Mouangué A. Le volcanisme fissural néoprotérozoïque des séries du Dja inférieur, de Yokadouma (Cameroun) et de Nola (RCA). Signification géotectonique. Comptes Rendus de l’Académie des Sciences de Paris, 1997 ; 325 : 671-677.
Google Scholar
14
-
Nédélec A, Macaudière J, Nzenti JP, Barbey P. Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun): implications pour la structure de la zone mobile panafricaine d’Afrique centrale au contact du craton du Congo. Comptes Rendus de l’Académie des Sciences de Paris, 1986 ; Tome 303 (Série II) : 75-80.
Google Scholar
15
-
Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, Nni J, Kankeu B, Ngako V, Hell JV. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences, 2006 ; 44: 443-458.
Google Scholar
16
-
Yonta-Ngouné C, Nkoumbou C, Barbey P, Le Breton N, Montel JM, Villiéras F. Geological context of the Boumnyebel talcschists (Cameroun): Inferences on the Pan-African Belt of Central Africa. Comptes Rendus Geoscience, 2010 ; 342 : 108-115.
Google Scholar
17
-
Li XH, Chen Y, Tchouankoue JP, Liu CZ, Li J, Ling XX, Tang GQ, Liu Y. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Research, 2017; 294: 307 - 321.
Google Scholar
18
-
Ngako V, Affaton P, Nnange JM, Njanko Th. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movement. Journal of African Earth Sciences, 2003; 36: 207-214.
Google Scholar
19
-
Ngako V, Njonfang E. Plates amalgamation and plate destruction, the western Gondwana history. In Closson D (ed) Tectonics INTECH, UK, 2011: 3-34.
Google Scholar
20
-
Tchakounté NJ, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, De Wit M, Barbey P. The Adamawa-Yadé domain, a piece of Archaean crust in the Néoproterozoic central African orogenic belt (Bafia area, Cameroon). Precambrian Research, 2017; 299: 210-229.
Google Scholar
21
-
Jain AK, Tuceryan M. ‘‘Texture analysis”, chapter 11 in the Handbook of pattern recognition and computer vision by C.H.Chen. World Scientific Publishing Co, 1992.
Google Scholar
22
-
Haralick RM. Statistical and structural approaches to texture. Proc. IEEE, 1979; 67 (5): 786–804.
Google Scholar
23
-
Reed IV TB, Hassong DM. Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. J. Geophys. Res, 1989 ; 94 (B6): 7469–7749.
Google Scholar
24
-
Azzibrouck G A, Saint-Jean R, Prévost C. Analyse de la texture d’une image RADARSAT pour la cartographie géologique dans la Forêt Équatoriale de Ngoutou, est du Gabon. Proceedings of Geomatics in the Era of RADARSAT (GER’97), 1997.
Google Scholar
25
-
Dong P, Leblon B. Rock unit discrimination on Landsat TM, SIR-C and Radarsat images using spectral and textural information. Int. J. Remote Sens, 2004; 25: 3745-3768.
Google Scholar
26
-
Li N. Textural and Rule-based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-basin, Transvaal Supergroup, South Africa Dissertation. LMU München: Faculty of Geosciences, 2010.
Google Scholar
27
-
De Morais MC, Martins J, Pereira P, Paradella WR. Mapping ironmineralized laterite environments based on textural attributes from MAPSAR image simulation – SAR-R99B (SIVAM/SIPAM) in the Amazon region. Rev. Brasileira de Geofísica, 2011; 29 (1): 99-111.
Google Scholar
28
-
Sukumar M, Meenambihai S. Discriminating lineaments from the aster image by analyzing the object properties. Int. J. Adv. Technol. Eng. Sci, 2015; 03(01): 2348-7550.
Google Scholar
29
-
Hammad N, Djidel M, Maabedi N. Cartographie des linéaments géologiques en domaine aride par extraction semi-automatique à partir d’images satellitaires : Exemple à la région d’El Kseïbat (Sahara algérien). Estud. Geol, 2016 ; 72 (1) : 49.
Google Scholar
30
-
Nguemhe FSC, Bekele MCH, Nkouathio DG, Mimba ME, Etouna J, Njandjock NP, Nyeck B. Radarsat-1 image processing for regional-scale geological mapping with mining vocation under dense vegetation and equatorial climate environment, Southwestern Cameroon. Egypt J Remote Sens Space Sci, 2018; 21: S43-S54.
Google Scholar
31
-
Leroy B, Cirotteau A. Projection UTM_Méridien international. Croquis provisoire au 1/200000 du SGAEF- Cameroun. Société nouvelle de cartographie Lithos-Paris, 1956.
Google Scholar
32
-
Davis PA, Breed CS, McCauly JF, Schaber GG. Surficial geology of the Safsaf region, south-central Egypt, derived from remote-sensing and field data. Remote Sens. Environ, 1993; 46 (2): 183-203.
Google Scholar
33
-
Hubbard BE, Crowley JK, Zimbelman DR. Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4 μm) Hyperion, ALI, and ASTER imagery. IEEE Trans. Geosci. Remote Sens, 2003, 41 (6):1401-1410.
Google Scholar
34
-
Kruse FA, Boardman JW, Huntington JF. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens, 2003; 41 (6):1388-1400.
Google Scholar
35
-
Robinson C, Baz EF, Singhroy V. Subsurface imaging by RADARSAT: Comparison with Landsat TM data and implications for groundwater in the Selima area, Northwestern Sudan. Can. J. Remote Sens, 1999; 29 (3): 268-277.
Google Scholar
36
-
Saint-Jean R, Singhroy V, Khalifa SM. Geological interpretation of the integrated SAR images in the Azraq area of Jordan, Can. J. Remote Sens, 1996; 21 (4): 511-517.
Google Scholar
37
-
Farr TG, Elachi C, Hartl P, Chowdhury K. Microwave penetration and attenuation in desert soils: a field experiment with the Shuttle imaging radar. IEEE Trans. Geosci. Remote Sens, 1986; 24 (4): 590-594.
Google Scholar
38
-
Lancaster N, Schaber GG, Teller JT. Orbital radar studiesof paleodrainages in the central Namib desert. Remote Sens. Environ, 2000; 71 (2): 216–225.
Google Scholar
39
-
Schaber GG, McCauley JF, Breed CS, Olhoeft GR. Shuttle imaging radar: physical controls on signal penetration and subsurface scattering in the eastern Sahara. IEEE Trans. Geosci. Remote Sens, 1986; 24 (4): 603-623.
Google Scholar
40
-
Schaber GG, McCauley JF, Breed CS. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir-Safsaf, Egypt, IEEE Trans. Geosci. Remote Sens, 1997, 59 : 337-363.
Google Scholar
41
-
Imessaoudene N.. Utilisation de la télédétection pour la cartographie géologique du Massif des Eglab et de sa bordure sédimentaire (Sud-Ouest algérien) Exemple de la feuille de Mokrid. Mémoire de master 2, Universite Ferhat Abbas – Setif, 2012; 68 p.
Google Scholar
42