##plugins.themes.bootstrap3.article.main##

Mining waste due to gold exploitation has a great consequence for the environment and needs to be assessed where mining sites are developed for good sustainable environmental management because it is responsible for the release of massive amounts of hazardous metals. For this purpose, the diagnosis of the current state of the environment of the mining sites of Fel and its environs was carried out through physical and geochemical analysis to assess evidence of pollutant capacity. Physical analyses focus on the granulometry of wastes while geochemical analyses concern the assessment of the amount 10 Metallic trace elements (MTE) on 9 samples from three mining sites. The results of the granulometric analyses reveal heterogeneity and discontinuity in the sandy gravel texture of the waste. Geochemical analyses show that a fine fraction less than 80 μm presents the best geochemical result for all chemical elements. The geoenvironmental assessment of the wastes according to the Geoaccumulation Index (Igeomax=7,14), the Contamination Factor (CFmax=212,45), the Degree of Contamination (DCmax=252,86) and the Sediment Pollution Index (SPI), characterized by low polluted sediment (SPImax=4,07), made it possible to establish the high link between As and Sb with very high concentrations, thus extreme pollution of these elements in the mining waste of the study area, particularly in Foum, Mama Wassande and Fel. Strong to very strong positive correlations observed between As and Cu, Pb, Cd and Cr, suggest that these MTE originated from a common source of contamination. Therefore, these MTE should be assessed on groundwater to prevent and avoid or minimize their effect on human health in this environment.

References

  1. Ahmad AK, Al-Mahaqeri SA. Assessment of Abandoned Mine Impacts on Concentrations and Distribution of Heavy Metals in Surface Sediments of Catchments Around Sungai Lembing Abandoned Tin Mine. Iranica Journal of Energy & Environment. 2014; 5: 453-460.
     Google Scholar
  2. Ameh EG. Geochemical Distribution of Heavy Metals in Soil around Itakpe Iron-Ore Mining Area-A Statistical Approach. Research Journal of Environmental and Earth Sciences. 2014; 6: 118-126.
     Google Scholar
  3. Ekengele Nga L, Jung MC, Ombolo A, Ngounou Ngatcha B, Ekodeck G and Mbome L. Metals Pollution in Freshly Deposited Sediments from River Mingoa, Main Tributary to the Municipal Lake of Yaounde, Cameroon. Geosciences Journal. 2008; 12: 337-347. http://dx.doi.org/10.1007/s12303-008-0034-5.
     Google Scholar
  4. Liu M, Yang Y, Yun X, Zhang M, Wang J. Concentrations, Distribution, Sources, and Ecological Risk Assessment of Heavy Metals in Agricultural Topsoil of the Three Gorges Dam Region, China. Environmental Monitoring and Assessment. 2015; 187 (147): 1-11. http://dx.doi.org/10.1007/s10661-015-4360-6.
     Google Scholar
  5. Ahmadipour F, Bahramifar N, Ghasempouri SM. Fractionation and mobility of cadmium and lead in soils of Amol area in Iran, using the modified BCR sequential extraction method. Chem. Speciat. Bioavailab. 2014; 26 (1): 31–36.
     Google Scholar
  6. Sakai H, Kojima Y, Saito K. Distribution of metals in water and sieved sediments in the Toyohira River. Water Res. 1986; 20 (5): 559–567.
     Google Scholar
  7. Zöllmer V, Irion G. Clay mineral and heavy metal distributions in the northeastern North Sea. Mar. Geol.1993; 11: 223-230.
     Google Scholar
  8. Calmano W, Wellerhaus S. Dredging of contaminated sediments in Weser estuary: Chemical forms of some metals. Environ. Technol.1982; 3: 199–208.
     Google Scholar
  9. Müller G. Schwermetalle in den sedimenten des Rheins-Veranderungenseit 1971. Umschau.1979 ; pp. 778-783.
     Google Scholar
  10. Sahli J, Mohamed EHEO, Afri-Mehennaoui F-Z, Mehennaoui S. Utilisation d’indices pour l’évaluation de la qualité des sédiments : cas du bassin Boumerzoug (Algerie). European Scientific Journal. 2014; 10 (35): 333 – 343. French.
     Google Scholar
  11. Müller G. The heavy metal pollution of the sediments of Neckars and its tributary: a stock taking. Chemical Zeitung.1981; 105: 157-164.
     Google Scholar
  12. Hakanson L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research. 1980; 14 (5): 975-1001.
     Google Scholar
  13. Rubio B, Nombela M A, Vilas F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar. Pollut. Bull. 2000; 40: 968-980.
     Google Scholar
  14. Singh M, Müller G, Singh I B. Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga plain, India. Water Air Soil Pollut. 2002; 141: 35-54.
     Google Scholar
  15. Taylor SR, McLennan SM. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publishers, Oxford. 1985.
     Google Scholar
  16. Bellair P, Pomerol C. Eléments de géologie. Armand Colin, Paris, France, 1977. French.
     Google Scholar
  17. Beaux J-F, Platevoet B, Fogelgesang J-F. Atlas de pétrologie. 2ème édition DUNOD.2016. French.
     Google Scholar
  18. Aloui H. Belgrana I. Valorisation des rejets de lixiviation en tas de la mine d'or d'Amesmessa (Tamanrasset). Mémoire de fin d’étude. Université Abderahmane Mira – Bejaia. 2015. French
     Google Scholar
  19. Fernandez-Caliani JC, Barba-Brioso C, Gonzalez I and Galan E. Heavy Metal Pollution in Soils Around the Abandoned Mine Sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soils Pollution. 2009; 200: 211-226.
     Google Scholar
  20. Maskall JE, Thornton I. Chemical partitioning of heavy metals in soils, clays and rocks at historical lead smelting sites. Water, Air Soils Pollution.1998; 108: 391-409.
     Google Scholar
  21. Romic M, Matijevic L, Bakic H, Copper RD. Accumulation in Vineyard Soils: Distribution, Fractionation and Bioavailability Assessment. Environmental Risk Assessment of Soil Contamination, 2014; ch. 28 pp. 800-825.
     Google Scholar
  22. Alkorta I, Hernandez-Alica J, Becerril JM, Amezaga I, Albizu I, Carbisu C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Reviews in Environmental Science and Biotechnology. 2004; 3: 29-39.
     Google Scholar
  23. Schindler D W. The significance of in-lake production of alkalinity. Water, Air and Soil Pollution.1986; 30: 931-944.
     Google Scholar
  24. Greorghe A, Grujenschi C. Etude hydrogéologique et du drainage souterrain à la mine de Kipushi. Notes internes du Service de Géologie Gécamines Kipushi. 1975. French.
     Google Scholar
  25. Mohsen N, Alireza P. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chemical Speciation & Bioavailability, 2014; 26 (2): 99-105. DOI: 10.3184/095422914X 13951584546986.
     Google Scholar
  26. Ekengele Nga L, Danala Danga S, Zo’o Zame P, Myung Chae J. Physical and Metals Impact of Traditional Gold Mining on Soils in Kombo-Laka Area (Meiganga, Cameroon). International Journal of Geosciences. 2016; 7: 1102-1121.
     Google Scholar
  27. Meriem L, Bouamar B, Hassan EH, Rachid M, Meryem T. Assessment of Heavy Metals Soil Contamination in the Abandoned Pb-mine of Zaida (Morocco). European Journal of Scientific Research. 2015; 129 (2): 167 - 178.
     Google Scholar
  28. Manta DS, Angelone M, Bellance A, Neriand R, Sprovieri M. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy.Sci. Total Environ. 2002; 30: 229-243.
     Google Scholar
  29. Dragovi S, Mihailovi N, Gaji B. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere. 2008; (72): 491–495.
     Google Scholar
  30. Bhuiyan M, Parvez L, Islam M, Dampare S, Suzuki S, Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater., 2009; 173: 384–392.
     Google Scholar