##plugins.themes.bootstrap3.article.main##

Agriculture in the Netherlands is a major source of ammonia (NH3) emissions. Deposited nitrogen levels in the Netherlands reached 2-3 times their critical value at the start of 2020. Excess nitrogen in soil may cause declines in biodiversity and ecosystemic disequilibrium. This may lead to acidic and decalcified soils that are less capable of retaining nutrients. The mineral fines in rock dust are proven agents in soil remediation and remineralization. Glacial moraine deposits are a branded source of rock dust and are contained in the glacial till of the “Hondsrug” area, a boulder clay ridge in the northeastern Netherlands. Formerly, erratic rocks from this boulder clay served various practical purposes. The existing apparent inutility of these erratic rocks motivates us to review their potential as rock dust. Lack of chemical analyses on the in situ erratic rocks resorts to an evaluation of their inferred Fennoscandian source rocks which are of igneous and sedimentary lithology. The chemical composition of these inferred source rocks is compared with that of proven rock dust suppliers. It is concluded that even though there are compositional parallels between the rock dust, the Hondsrug area glacial till is comparatively decalcified and mineralogically of limited benefit. Moreover, exceptional magnitudes of erratic rocks are scarcely encountered while at the same time, the bulk is preserved as geological heritage. Despite the adversities, it could be chosen to commence trials with crushing idle erratic rocks in the Hondsrug area whenever this may be assessed as a useful supplement.

References

  1. Velthof GL, Van Bruggen C, Groenestein CM, De Haan BJ, Hoogeveen MW, Huijsmans JF. A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmospheric environment. 2012 Jan 1;46:248-55. https://doi.org/10.1016/j.atmosenv.2011.09.075.
     Google Scholar
  2. Jimmink BA, Coenen PW, Dellaert SN, Geilenkirchen GP, Hammingh P, Leekstra AJ, et al. Informative Inventory Report 2017: Emissions of transboundary air pollutants in the Netherlands 1990-2015. https://doi.org/10.21945/RIVM2017-0002.
     Google Scholar
  3. Wever D, Coenen PW, Dröge R, Geilenkirchen GP, t Hoen M, Honig E, et al. Informative Inventory Report 2021. Emissions of transboundary air pollutants in the Netherlands 1990–2019. DOI: 10.21945/RIVM-2021-0005.
     Google Scholar
  4. Drok W. Redt steenmeel het oude eikenbos op de Veluwe? Nature Today, 2020 15 February [Accessed 3rd Mar 2022]. Dutch.
     Google Scholar
  5. De Vries W, Weijters M, de Jong A, van Delft B, Bloem J, van den Burg A, et al. Verzuring van loofbossen op droge zandgronden en herstelmogelijkheden door steenmeeltoediening. In: Vereniging van Bos- en Natuurterreineigenaren (VBNE). Available via Alterra, WUR, 2019 [Accessed 3rd Mar 2022].
     Google Scholar
  6. Barker AV, O’Brien TA, Campe J. Soil Remineralization for sustainable crop production. In: Beneficial Co-Utilization of Agricultural, Municipal and Industrial by-Products. 1998 (pp. 405-413). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5068-2_35.
     Google Scholar
  7. Sgouridis F, Forrester H, Tingey S, Wadham J. Glacial Rock Flour as soil fertility amendment increases N fixation activity in red clover and enhances soil N2O reduction. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5489. https://doi.org/10.5194/egusphere-egu22-5489.
     Google Scholar
  8. Gronholt-Pedersen J. Climate-friendly farming: Greenland's melting glaciers offer an answer. Reuters, 2021 18 November [Accessed 1st Dec 2022].
     Google Scholar
  9. Hamaker JD, Weaver DA. Survival of Civilization. Seymour, MI, USA: Hamaker-Weaver Publishers; 1982 Jun.
     Google Scholar
  10. Bregman EP, Smit FW. Genesis of the Hondsrug: A Saalian megaflute, Drenthe, the Netherlands. Steering Group aspiring EUROPEAN GEOPARK de Hondsrug. 2012.
     Google Scholar
  11. Schuddebeurs AP. Zwerfsteentellingen in Noord-Nederland. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie. 1982 Jan 1;19(3):81-108. Dutch.
     Google Scholar
  12. Faraone N, Hillier NK. Preliminary evaluation of a granite rock dust product for pest herbivore management in field conditions. Insects. 2020 Dec 11;11(12):877. https://doi.org/10.3390/insects11120877.
     Google Scholar
  13. Ramos CG, Hower JC, Blanco E, Oliveira ML, Theodoro SH. Possibilities of using silicate rock powder: An overview. Geoscience Frontiers. 2022 Jan 1;13(1):101185. https://doi.org/10.1016/j.gsf.2021.101185.
     Google Scholar
  14. Swoboda P, Döring TF, Hamer M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of The Total Environment. 2022 Feb 10;807:150976. https://doi.org/10.1016/j.scitotenv.2021.150976.
     Google Scholar
  15. Brady NC, Weil RR, Weil RR. The nature and properties of soils. Upper Saddle River, NJ: Prentice Hall; 2008 Jan.
     Google Scholar
  16. Tucker MR. Essential plant nutrients: their presence in North Carolina soils and role in plant nutrition. In: North Carolina State Documents Collection. State Library of North Carolina Department of Agriculture and Consumer Services, Agronomic Division; 1999. Available via NC State University [Accessed 3rd Mar 2022]. https://sampson.ces.ncsu.edu/wpcontent/uploads/2021/07/2-Essential-Plant-Nutrients.pdf?fwd=no.
     Google Scholar
  17. White PJ, Brown P. Plant nutrition for sustainable development and global health. Annals of botany. 2010 Jun 1;105(7):1073-80. https://doi.org/10.1093/aob/mcq085.
     Google Scholar
  18. Haldorsen S, Jørgensen P, Rappol M, Riezebos PA Composition and source of the clay‐sized fraction of Saalian till in The Netherlands. Boreas. 1989 Jun;18(2):89-97. https://doi.org/10.1111/j.1502-3885.1989.tb00377.x.
     Google Scholar
  19. Schulze DG. Clay Minerals. In: Encyclopedia of Soils in the Environment, vol. 1, Hillel D, Ed. Boston: Elsevier / Academic Press, 2005, pp. 246-254.
     Google Scholar
  20. Manning DA. Mineral sources of potassium for plant nutrition. In: Sustainable Agriculture, vol. 2, 2011, pp. 187-203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_11.
     Google Scholar
  21. Borchardt G. Smectites. In: Minerals in soil environments. Dixon JB and Weed SB, Madison, Soil Science Society of America, 1989, pp 675-727. https://doi.org/10.2136/sssabookser1.2ed.c14.
     Google Scholar
  22. Van Duinhoven G. Steenmeel toedienen mag soms/ nooit/ wel/ misschien/ nog niet. In: Vakblad natuur bos landschap. Stichting Vakblad Natuur Bos Landschap. Available via Alterra, WUR; 2021 [Accessed 30 Jul 2022]. Dutch. https://edepot.wur.nl/547395.
     Google Scholar
  23. Foth HD, Ellis BG. Soil fertility, Lewis CRC Press LLC. USA 290p. 1997.
     Google Scholar
  24. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, et al. Nutrient imbalances in agricultural development. Science. 2009 Jun 19;324(5934):1519-20. https://doi.org/10.1126/science.1170261.
     Google Scholar
  25. Manning DA, Theodoro SH. Enabling food security through use of local rocks and minerals. The Extractive Industries and Society. 2020 Apr 1;7(2):480-7. https://doi.org/10.1016/j.exis.2018.11.002.
     Google Scholar
  26. Helmholtz Association of German Research Centres. Mapping the most fertile soils in Europe. [Internet] 2007 [updated 2007 Nov 16; cited 2022 Dec 1]; Available from: https://www.sciencedaily.com/releases/2007/11/071115113328.htm.
     Google Scholar
  27. Politico.eu. Mud and guts: Europe’s forgotten environmental crisis [Internet]. 2019 [updated 2019 Apr 3; cited 2022 Dec 1]. Available from: https://www.politico.eu/article/europe-forgotten-environmental-crisis-soil/.
     Google Scholar
  28. Remineralize The Earth. Rock Dust as a Sustainable Amendment in Northwestern European Agriculture [Internet] 2022. [updated 2022 May 1; cited 2022 Dec 1]. Available from: https://www.remineralize.org/2022/05/rock-dust-as-a-sustainable-amendment-in-northwestern-european-agriculture/#:~:text=Silicon%20in%20rock%20dust%20may,usage%20and%20sequestering%20CO2.
     Google Scholar
  29. Schilthuis G. Perspectives for nutrient management in Europe Under the Farm to Fork Strategy and the Common Agricultural Policy. PHOS4YOU Final Conference, 2021 Sep 23; Essen, Germany.
     Google Scholar
  30. Clark CM, Bai Y, Bowman WD, Cowles JM, Fenn ME, Gilliam FS, et al. Nitrogen deposition and terrestrial biodiversity. In: Encyclopedia of Biodiversity, 2nd ed, vol. 5, Levin SA, Ed. Waltham, MA: Academic Press. pp. 519-536. 2013;5:519-36. https://doi.org/10.1016/b978-0-12-384719-5.00366-x.
     Google Scholar
  31. Van Dobben HF, Van Hinsberg A. Overzicht van kritische depostiewaarden voor stikstof, toegepast op habitattypen en Natura 2000-gebieden. In: Alterra-rapport 2397. Available via Alterra, WUR; 2008 [Accessed 30th Jul 2022]. Dutch. https://library.wur.nl/WebQuery/wurpubs/434041.
     Google Scholar
  32. Provincie Drenthe. Drentse Aanpak Stikstof: Gebiedsverkenning Elperstroom. [Internet] 2021 [updated 2021 Nov 23; cited 2022 Jul 30]. Dutch. Available from: https://www.provincie.drenthe.nl/publish/pages/133091/lg-w2111_181-drentse_aanpak_stikstof-gebiedsverkenningen-elperstroom.pdf.
     Google Scholar
  33. Gies E, Kros H, Voogd JC. Inzichten stikstofdepositie op natuur: Memo. Wageningen Environmental Research; 2019. Dutch.
     Google Scholar
  34. Natuur en Milieufederatie Drenthe. Van crisis naar oplossingen: Bouwstenen voor een Drents stikstofprogramma [Internet] 2019 [updated 2019 Dec 3; cited 2022 Jul 30]. Dutch. Available from: https://www.drentsparlement.nl/Vergaderingen/Statencommissie-Omgevingsbeleid-OGB/2019/06-december/15:00/OGB061219-B1-NMF-Drenthe-03-12-2019-Bouwstenen-Drents-Stikstofprogramma-COMPL.pdf.
     Google Scholar
  35. Catt JA. The agricultural importance of loess. Earth-Science Reviews. 2001 Jun 1;54(1-3):213-29. https://doi.org/10.1016/S0012-8252(01)00049-6.
     Google Scholar
  36. Jenkins S. How the Russia-Ukraine War Helped Fuel Record Fertilizer Prices. Federal Reserve Bank Of St. Louis, 2022 4 October [Accessed 9th Jan 2023]. Available from: https://www.stlouisfed.org/publications/regional-economist/2022/oct/russia-ukraine-war-record-fertilizer-prices.
     Google Scholar
  37. Hilson G, Hilson A, McQuilken J. Ethical minerals: Fairer trade for whom? Resources policy. 2016 Sep 1;49:232-47. https://doi.org/10.1016/j.resourpol.2016.05.002.
     Google Scholar
  38. Franks DM. Reconsidering the Role of Minerals and Matter in International Development. IUGS Resourcing Future Generations, Bryan Lovell Meeting 2017: Mining for the Future
     Google Scholar
  39. Ramezanian A, Dahlin AS, Campbell CD, Hillier S, Mannerstedt-Fogelfors B, Öborn I. Addition of a volcanic rockdust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity. Plant and soil. 2013 Jun;367(1):419-36. https://doi.org/10.1007/s11104-012-1474-2.
     Google Scholar
  40. Bakken AK, Gautneb H, Myhr K. The potential of crushed rocks and mine tailings as slow-releasing K fertilizers assessed by intensive cropping with Italian ryegrass in different soil types. Nutrient Cycling in Agroecosystems. 1996 Feb;47(1):41-8. https://doi.org/10.1007/BF01985717.
     Google Scholar
  41. Bakken AK, Gautneb H, Sveistrup T, Myhr K. Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems. 2000 Jan;56(1):53-7. https://doi.org/10.1023/A:1009709914578.
     Google Scholar
  42. Chiwona AG, Cortés JA, Gaulton RG, Manning DA. Petrology and geochemistry of selected nepheline syenites from Malawi and their potential as alternative potash sources. Journal of African Earth Sciences. 2020 Apr 1;164:103769. https://doi.org/10.1016/j.jafrearsci.2020.103769.
     Google Scholar
  43. De Waard D. Glacigeen Pleistoceen, een geologisch detailonderzoek in Urkerland, Noordoostpolder. Verhandelingen Geologisch en Mijnbouwkundig Genootschap. 1949;15:70-246. Dutch.
     Google Scholar
  44. Zandstra JG. A new subdivision of crystalline Fennoscandian erratic pebble assemblages (Saalian) in the central Netherlands. Geologie en Mijnbouw. 1983;62(3):455-69.
     Google Scholar
  45. Zandstra JG. Explanation to the map ‘Fennoscandian crystalline erratic of Saalian age in The Netherlands’. In: Tills and Glaciotectonics. Van der Meer JJM. Ed. Rotterdam: Balkema, 1987, pp 127-134.
     Google Scholar
  46. Eklund O, Fröjdö S, Lindberg B. Magma mixing, the petrogenetic link between anorthositic suites and rapakivi granites, Åland, SW Finland. Mineralogy and Petrology. 1994 Mar;50(1):3-19. https://doi.org/10.1007/BF01160135.
     Google Scholar
  47. Tullborg EL, Larsson SA, Björklund L, Stigh J, Samuelsson L. Thermal evidence of Caledonide foreland, molasse sedimentation in Fennoscandia. Swedish Nuclear Fuel and Waste Management Co.; 1995.
     Google Scholar
  48. Erlström M, Guy-Ohlson D. An Upper Triassic, Norian–Rhaetian, outlier in Skåne, southern Sweden. Bulletin of the geological Society of Denmark. 1999;45:89-97.
     Google Scholar
  49. Bolland MD, Baker MJ. Powdered granite is not an effective fertilizer for clover and wheat in sandy soils from Western Australia. Nutrient Cycling in Agroecosystems. 2000 Jan;56(1):59-68. https://doi.org/10.1023/A:1009757525421.
     Google Scholar
  50. Bosgroepen.nl. Steenmeel helpt bij duurzaam herstellen van 520 hectare bodem en natuur [Internet] 2021 [updated 2021 Nov 8; cited 2022 Jul 30]. Dutch. Available from: https://bosgroepen.nl/bosgroep-zuid-nederland/steenmeel-helpt-bij-duurzaam-herstel-bodem-en-natuur/.
     Google Scholar
  51. Lemmers N. Hoe groot en zwaar is een hunebedsteen? En hoe weten we dit? Hunebed Nieuwscafe, 2017 [Accessed 30th Jul 2022]. Dutch. Available from: https://www.hunebednieuwscafe.nl/2017/09/hoe-zwaar-groot-is-hunebedsteen/.
     Google Scholar
  52. Hepler PK. Calcium: a central regulator of plant growth and development. The Plant Cell. 2005 Aug;17(8):2142-55. https://doi.org/10.1105/tpc.105.032508.
     Google Scholar
  53. Priyono J, Gilkes RJ. Dissolution of milled-silicate rock fertilisers in the soil. Soil Research. 2004;42(4):441-8. https://doi.org/10.1071/SR03138.
     Google Scholar
  54. Priyono J, Gilkes RJ. High‐energy milling improves the effectiveness of silicate rock fertilizers: a glasshouse assessment. Communications in soil science and plant analysis. 2008 Feb 1;39(3-4):358-69. https://doi.org/10.1080/00103620701826498
     Google Scholar
  55. Lim WR, Kim SW, Lee CH, Choi EK, Oh MH, Seo SN, et al. Performance of composite mineral adsorbents for removing Cu, Cd, and Pb ions from polluted water. Scientific reports. 2019 Sep 19;9(1):1-0.
     Google Scholar
  56. Ciceri D, Allanore A. Microfluidic leaching of soil minerals: release of K+ from K feldspar. PloS one. 2015 Oct 20;10(10):e0139979. https://doi.org/10.1371/journal.pone.0139979.
     Google Scholar
  57. Swoboda P. Rock dust as agricultural soil amendment: a review. M.Sc. Thesis. University of Bonn; 2016.
     Google Scholar